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Summary. The background of the propagator  methods introduced into quantum 
chemistry by Linderberg and O h m  is briefly reviewed. Emphasis is put on its 
connection with the superresolvent associated with the Liouvillians superoperator 
as shown by Goscinski et al. The paper  stresses the importance of the effective- 
ness of the resolvent approach in general, and points out that, for the ordinary 
Hamiltonian, this method is not only conceptually important  as the basis 
for infinite-order perturbation theory and rational approximations but also as 
the foundation for a large-scale computat ional  effort still to come. Even if it may be 
premature to ask for a similar effort related to the superoperator,  it would 
certainly be of value to carry out some test calculations based on the Hi lber t -  
Schmidt binary product, in which the Liouvillian superoperator is automatically 
self-adjoint, and to compare the results with those obtained from the more con- 
ventional propagator  methods. The importance of the use of approximations based 
on "inner projections" in both these approaches is also mentioned. 
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1 Introduction 

A fundamental problem in quantum theory is to solve the Schr6dinger equation: 

H~P = ET', (1.1) 

where H is the Hamiltonian operator, which is self-adjoint and bounded from 
below, and the eigenfunction tp is subject to some specific boundary condition. In 
this paper  we will use the following concepts and terminology: The linear space (7 ~) 
consisting of all wave functions ~ in the L 2 Hilbert space will be referred as the 
wave funct ion space, and the space {T} of all linear mappings T defined on this 
space will be called the operator space, whereas the space {M} of all mappings 
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defined on the operator space will be referred to as the superoperator space. In 
the wave function space, we will introduce the standard binary product in terms of 
Dirac's bracket notation (a[b ) ,  and this notation T = ]b)(al  for the dyadic 
(ket-bra) operator defined by the relation T~P = b(alT~) .  We note that the 
operator T has a single non-vanishing eigenvalue 2 = ( a l b ) ,  and that it satisfies 
the relations T* = la)(b]  and Tr  T = (a ]b) .  

In many parts of quantum theory, there has been a desire to try to calculate 
energy differences v = Ef - Ei directly without first solving the Schr6dinger equa- 
tion for the initial state qJ~ and final state ~f associated with the Hamiltonian H. 
For  this purpose, it is convenient to introduce a Liouvillian superoperator L, which 
is defined on an operator space { T } through the relation: 

L T  - H T  - TH.  (1.2) 

If one considers the ket-bra  operator C = I ~ f ) ( ~ i ] ,  it is obvious that C is an 
eigenoperator to the Liouvillian having the property 

LC = (el -- El)C, (1.3) 

i.e. the energy differences v are the eigenvalues of the Liouvillian. However, if one 
takes the ordinary harmonic oscillator as an example, it is clear that all its 
eigenvalues v are going to be infinitely degenerate, and that it is not possible to 
attack the eigenvalue problem in the conventional way. During the 1950's, there 
were special methods developed in field theory and nuclear physics, which became 
known as propagator methods, and - around 1965 - Linderberg and Ohrn [-1] 
successfully introduced such methods into quantum chemistry. A propagator of 
two linear operators, A and B, and a complex variable z is a binary form ((A; B ) )  z 
which is usually defined implicitly through a so-called propagator relation. By 
means of the proper spectral resolutions and various decoupling schemes, Linder- 
berg and Ohm turned the propagator methods into powerful tools for calculating 
energy differences, ionization potentials, and electron affinities for atoms and 
molecules, which has led to many important applications [2]. The propagator 
methods in quantum chemistry have later been further developed by several 
authors [3]. If one iterates the fundamental propagator relation, one gets a geomet- 
ric expansion in terms of the quantity z -  1/~, with the sum (1 - z -  1L)-  1, where i is 
the identity mapping in the superoperator space, and in this way Goscinski et al. 
[4] could give an explicit expression for the propagator ((A; B))z  involving the 
superresolvent: 

iff(z) = (z" i - £ ) -  1. (1.4) 

The close connection between the propagators and the resolvents has been studied 
in greater detail elsewhere [5]. However, the author feels that neither the propa- 
gator methods nor the resolvent techniques have so far been given enough atten- 
tion by the computational quantum chemists, and has taken this opportunity to 
emphasize their importance once more. 

2. The resolvent method for the Hamiltonian 

Let us start by considering the eigenvalue problem (1.1) for the ordinary Hamil- 
tonian H, subject to the boundary condition ( cpl 7 ~) = 1, where ~o is a normalized 
reference function in the L 2 Hilbert space. The relation (~0l 5u) = 1 is often referred 
to as the "intermediate normalization", and we note that it may be used for the 
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discrete states 7 ~ as well as the scat tering states 7 j in the cont inuum.  However ,  
instead of the original eigenvalue p rob lem 

H g J = E ~ P ,  (q0[7~> = 1, (2.1) 

we will now consider  the inhomogeneous  equat ion  

( H - z ' l ) T z = a ( p ,  ( q ) l T z > = l ,  (2.2) 

where the coefficient a has to be adap ted  to the bounda ry  condit ion (q~ [ Tz > = t. 
Mult ip lying the first relation (2.2) by ((p[, one gets immediate ly  the explicit 
expression 

a = Q p [ ( n  - z.  1) 7~z> = ( (p ln l  % >  - z - a(z) ,  (2.3) 

i.e. the coefficient a is a function of the complex variable z. In order  to solve the 
inhomogeneous  equat ion,  one introduces the ope ra to r  

R ( z )  = (z-1 - H ) - 1 ,  (2.4) 

which is called the r e s o l v e n t  associated with the Hami l ton ian  H, and which gives 
the solut ion in the form 

% = - a R ( z ) q x  (2.5) 

The  propert ies  of  the resolvent have been studied by the mathemat ic ians  since the 
end of the last century. Whenever  [z - El > p, the resolvent is a b o u n d e d  operator ,  
which in terms of the n o r m  II x I[ = ( x l  x)1/2, satisfies the inequali ty II R ( z ) ~  II < 
I] 4)I]- F r o m  the identi ty 

R ( z )  = z - ~ + z ~ H R ( z ) ,  (2.6) 

one m a y  further - if desired - derive m a n y  relations of p r o p a g a t o r  type. F r o m  the 
bounda ry  condi t ion (q)[ 7~> = 1, one gets further a different expression for the 
coefficient a: 

a = - 1 / ( ( p l R ( z ) ] ( p > .  (2.7) 

Substi tut ing this expression into Eq. (2.5), one gets the explicit solution 

R ( z ) q )  

7'z - ((plR(z)l~o> ' (2.8) 

which takes the indefinite form oo / ~ whenever  z approaches  an eigenvalue z = E. 
In  order  to proceed, it is convenient  to in t roduce the projector  O = ] ~o > ((p] for the 
reference space as well as the projector  for its o r thogona l  complemen t  P = 1 - O. 
F r o m  the identi ty (z- 1 - H ) R ( z )  = 1, one gets immedia te ly  a series of identities 

( z . 1  - H ) R  = 1, 

( z .  1 - H ) R q )  = (p,  ( ~ o l ( z "  1 - H ) R ( p >  = 1 ,  

(z"  1 - H ) R q )  = (p((p](z" 1 - H ) R q ~ > ,  

( z .  1 - -  H ) R q ~  - z ( p (  ~olR(p ) - O n R c p ,  

( z .  1 - P H ) R q ~  = z~pQplRq)>, 

Rq)/ (q)JR]( ,o> = (1 -- P U / z ) -  ~(,o. (2.9) 

which are valid for all values of z and  all normal ized  reference functions ~o. Hence 
one has the simple formula  

~ez = (1 - P H / z ) - l , p ,  (2.10) 
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which remains finite even for z = E, and which gives the connection between the 
resolvent technique and the partitioning technique [6]. It is evident that the 
function a = a(z) is the key quantity, and that the z-values for which a ( z ) =  0 
should correspond to the eigenvalues z = E, since the homogeneous equation (2.2) 
is then reduced to the homogeneous Schr6dinger equation (2.1). It should be 
observed, however, that the equation a(z) = 0 is not identical to the characteristic 
equation but to the reduced characteristic equation having even multiple eigen- 
values represented by single roots. The reason for this is the following. 

Let us first observe that the resolvent R(z )  is not self-adjoint but is com- 
plex-hermitean, so that {R(z)} * = R ( z * ) ,  where z* denotes the complex conjugate 
value of z. Since the resolvent has the derivative d R / d z  = - R 2, the fundamental 
function a(z) = - (q0lR(z)lrp)-i has the derivative 

d a ( z ) / d z  = ( (p lR ( z ) l~o ) -  2 ( (p ldR(z ) /dz lqo)  

= _ ( ~ o F e ( z ) l ~ o ) - 2 ( q ) l e 2 1 ~ o )  

= _ ( ~ o l R ( z ) l o ) - e ( R * e p l R c p )  

= - ( % , l ~ z ) .  (2.11) 

This means that, for real values of z, the derivative d a / d z  is always negative and 
never zero, and this implies that the equation a(z) = 0 can never have multiple 
roots. As a consequence, the function (~01R(z)[(0) has only single poles, which 
reflects an important  property of the resolvent. 

Since the function a = a(z) has such a simple derivative, it seems convenient to 
solve the equation a(z) = 0 by means of the Newton-Raphson  method, which gives 
the second-order iteration formula 

ZNR = Z -- a (z ) /a ' ( z )  (2.12) 

Using the relations (2.2) and particularly the fact that ((0 ] 7'z) = 1 = (7'z, [(p), one 
obtains 

ZNR = Z -- a (z)/a'(z)  = z -- a (z) ( 7*=. ] (p)/a ' (z)  

= z - ( ~ z ,  la ( z )qo) /a ' ( z )  

-- z + <~Pz*lH - z. 117~z>/< 7~z.I 17~z> 

= < 7 ' = , 1 ~ >  ' ( 2 . 1 3 )  

where the last expression is the bi-variational formula, i.e. the ordinary variational 
formula modified to take into account the fact that z is now a complex variable [7]. 

Substituting formula (2.10) into Eq. (2.3), one gets an alternative expression for 
the function a(z): 

a ( z ) =  <qolH[~Pz> -- z =  < ( p l H ( 1 -  P H / z ) - l l ~ o >  -- z = f ( z ) - -  z, (2.14) 

where 
f ( z )  - ((plH(1 - P H / z ) - l l e p )  (2.15) 

is the so-called bracketing funct ion,  which for real z has the important  property 
that between z andf (z )  there is always a true eigenvalue E. For the wave operator 
W = (1 - P H / z ) - 1 ,  one may use the expansion 

W = (1 - P H / z )  -1  = 1 + (z.  1 - P H ) - I P H  = 1 + T H ,  (2.16) 



Some remarks on propagators and resolvents 281 

where the operator  T defined by the first of the relations 

T = (z. 1 - P H ) - I P  = P(z .  1 - H P ) - ~  = P(z .  1 - P H P ) - a P  (2.17) 

is usually referred to as the reduced resolvent associated with the auxiliary Hamil-  
t o n i a n / 1  = PHP.  Since the Hamiltonian H is bounded from below, it is easily 
shown that the eigenvalues/~k of its "outer pro jec t ion" / t  = P H P  are always upper 
bounds (in order) to the true eigenvalues Ek, so that 

gk > Ek. (2.18) 

So far, this approach is mathematically exact, and we note that this depends on 
the fact that the operator P = 1 -I~0)(~01 for the orthogonal complement to 
O = 1~o)( qo I is defined on the entire infinite Hilbert space. 

In many  cases, however, it is convenient to use approximations based on the 
introduction of a finite basis set of order p defined by p linearly independent - but 
not necessarily orthonormal-functions - functions h = (hi,  h2, h 3 ,  . . .  , hp) .  If A is 
an arbitrary linear operator  having an inverse A - 1, the operator  may be approxim- 
ated by a so-called inner projection [8]: 

A'  = Ih ) ( h l A - 1 l h  ) - l  (h[.  (2.19) 

It is easily shown that, if p ---, oo and the set h becomes complete, then A' converges 
towards A. If further the operator A is positive definite or has only a finite number  
of negative eigenvalues, then - if the set h is sufficiently large - A'  converges 
towards A from below. This is a remarkable property, since in computat ional  
quantum chemistry one is otherwise accustomed to the fact that the use of a 
truncated basis set always leads to approximations providing upper bounds as 
reflected e.g. in relation (2.26). If one applies the inner projection to the resolvent 
operator  R(z) = (z. 1 - H ) - 1 ,  one gets for instance 

R'(z)  = ]h ) ( htz"  1 - H[h ) -  l ( hl. (2.20) 

which expression becomes singular for the eigenvalues of the matrix ( h ] H [ h ) .  In 
some of the propagator  methods, it has turned out to be very useful to utilize this 
expression to estimate the remainder in any propagator  formula based on repeated 
use of the relation (2.6). It should be observed, however, that there are also many 
other uses of the inner projections in the theory developed above. 

If H = Ho + 2V, one may use this formalism to derive various types of per- 
turbation theory, and to get exact expressions for the wave and reaction operators 
associated with infinite-order perturbation theory I-9]. However, since each (k, l) 
element of the inverse of the matrix A = ( h [ A - l [ h )  in relation (2.27) may be 
expressed as the quotient between the cofactor of Atk and the full determinant I A I, 
one may use the inner projections to derive rational approximations in terms of the 
parameter  2 [i0].  The applications carried out so far show that this may be a very 
powerful approach to many  problems in quantum chemistry. 

In many  parts of computat ional  quantum chemistry, the main trend so far has 
been to use CI-methods based on G U G A  and similar schemes and enormous 
number  crunchers to get the results desired for small and intermediate size mole- 
cules. However, it is evident that, even with a further development of the super- 
computers, this type of ab initio methods will never be applicable to molecules over 
a certain size, and that this may provide a severe limitation. In the opinion of the 
author, time has hence come to pay more attention to the various forms of the 
resolvent methods for the ordinary molecular Hamiltonian H, and try to develop 
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the software necessary for the application of these methods to quantum chemistry. 
Even if this may require a very large programming effort, it may turn out to be 
exceedingly efficient and worthwhile for the future development of our field. 

3. The resolvent and propagator methods for the Liouvillian 

It is evident that, if the eigenvalue problem H ~  = E7 j for the ordinary Hamil- 
tonian H represents a formidable problem in operator space, then the eigenvalue 
problem L C  = vC in the superoperator space ought to be at least one-order of 
magn!tude more difficult. As mentioned in the introduction, it was Linderberg 
and Ohrn who should be given the credit for attacking this difficult problem in 
molecular physics by means of the propagator methods. It was also pointed out 
that the propagator methods are connected with the superresolvent 

/~(Z) = (Z] - -  L )  - 1 ,  (3.1) 

and its expansions 

/~(z)  = z * + z - : £ ~ ( z )  = z - 1  + z : £  + z 3 £ : ~ ( z )  . . . .  (3.2) 

When the propagator methods were developed in field theory and nuclear physics 
in the 1950's, the computational tools were very limited, and in order to solve the 
problems one had to introduce further simplifications and approximations, which 
from a more modern point of view may seem questionable. This approach led also 
to the introduction of a binary product in the operator space which has many 
undesirable properties among other things the Liouvillian was not self-adjoint in 
this particular metric. With the development of the modern supercomputers, we are 
today in a somewhat different situation, and the author feels that perhaps time has 
come to try to put the theory of the Liouvillian and its superresolvent on a more 
sound mathematical basis. 

Let us first of all introduce a complete orthonormal basis q~-- 
{q) l ,  ~02, " "  , ~0k, --" } in the wave function space having the properties 

(@k[@l) = CSkz, 1 =[q~)(q~[ =Z[qgk) (q )k[ .  (3.3) 
k 

Every linear operator T has then a matrix representation T =  {Tkt}, where 
Tkz = (q~klTIq)1 ).  Of particular interest are such operators for which the sum of 
all absolute squares I Tkzl 2 is finite: 

[Tktl 2 < oo, (3.4) 
kl 

and in mathematics, they are known as the Hilbert-Schmidt  operators. If one 
introduces the binary operator product 

{T1 [ T2} = Tr TI* T2 = 2 (T1)*(r:)kz, (3.5) 
kl 

it may be shown that the Hilbert Schmidt operators { T } form a linear space, which 
is another realization of the abstract Hilbert space introduced by von Neumann 
[11]. This binary product has further the convenient property that the Liouvillian 
remains a self-adjoint superoperator: 

{T~ ILT:} = {/~T~ IT:}, (3.6) 
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which is of fundamental importance in studying its spectra properties. It should 
further be observed that the operators P1k = [~0k)(q)ll form an orthonormal basis 
for the operator space {T }, and that one has now the expansion theorem 

r = 1. T.  1 = I~o)(~ol r l q , ) ( q , I  -- Y~ I~0k)(~0kl r I~01)(~o~1 
kl  

= ~, Tk, Ptk, (3.7) 
kl  

which proves this statement. 
Since the Liouvil l ian/ ,  now works on the Hilbert space {T} formed by the 

Hilbert-Schmidt operators T, the remaining part of the treatment follows the same 
scheme as developed for the Hamiltonian working on the Hilbert space { ~g} and 
we can be very brief. Instead of the eigenvalue problem [,C = vC, we will consider 
the inhomogeneous equation 

([, - z .  " [ ) C z  = a F ,  (3.8) 

where F is a normalized reference operator. For  the sake of simplicity, we will 
choose F = [(p )(q~[, where ~o is our previous reference function. We will solve the 
eigenvalue problem and the inhomogeneous equation subject to the intermediate 
normalization 

i.e. 
{ F ] Cz } = 1, (3.9) 

{F[Cz} = Tr I~p>(~plCz = G0 ICzlq~) = 1. (3.10) 

Using the superresolvent (3.1), one gets immediately the solution 

Cz = - aR(z )F = _R(z)F / { F I/¢(z)l F},  (3.11) 

where {F]R(z )F}  = <q~ ]/~(z)F] ~o). It is evident that the quantity 

a(z) = - 1/{F]/~(z)]F} (3.12) 

is again going to be the key quantity of the theory. In analogy with Eq. (2.19), one 
gets directly 

da(z) /dz  = - {Cz. [C~}, (3.13) 

and, since a'(z) is always negative and never zero, the equation a(z) = 0 can only 
have single roots and the function W(z) = { F IR(z)IF} only have single poles. This 
result implies that every eigenvalue v can appear only once, which is a particularly 
important feature in this connection, since the Liouvillian itself may easily have 
infinitely degenerate eigenvalues as shown by the example of the harmonic oscil- 
lator. One may now solve Eq. a(z) = 0 by iteratively using the Newton-Raphson 
formula according to Eq. (2.20), and in analogy with Eq. (2.21), one can then derive 
the formula 

{c~,1£1c~} 
ZNR-- {Cz*lCz} ' (3.14) 

which shows the connection with the bi-variational principle. At this point, one 
should observetha t ,  whereas the Hamiltonian H is bounded from below, the 
superoperator L is not bounded at all. 
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In analogy with Eq. (2.9), one can now derive an identity which leads to the 
explicit formula for the solution 

Cz = R ( z ) F /  { F IR ( z ) IF}  - (l - P L / z ) -  I F ,  (3.15) 

and from then on the development  goes in parallel with the theory developed for 
the Hamiltonian.  We note particularly that, i f H  = (H, ,  H2, H3, . . . ,  Hp) is a set of 
linearly independent  operators  in the opera tor  space, then every superoperator  M 
having an inverse M - i  may  be approximated  by an inner projection: 

~r, (z) = IH} { H I M -  I [ H } - '  {HI ,  (3.16) 

which for the superresolvent takes the special form 

P, '(Z)  = I H } { H I z . ' [ -  /~[H} -~ {HI; (3.17) 

we note that  this expression converges but no longer from below. In connect ion 
with the p ropaga to r  methods and expansions of the type (3.2), the inner projection 
has already turned out  to be a valuable approximation.  In the work  by Linderberg 
and O h m ,  there is a consistent improvement  of the p ropaga to r  approach  connect-  
ing the t ime-dependent H a r t r e e - F o c k  method  with the random-phase  approxima-  
tion (RPA) and the T a m m - D a n c o f f  Scheme (TDS) leading to the antisymmetrized- 
geminal-power (AGP) method,  which gives impor tant  aspects on the connect ion 
between molecular  physics and the solid-state theory of  superconductivity,  and 
similar phenomena.  

Since we do not  yet have any large-scale computa t iona l  scheme developed for 
the resolvent method  of  the ordinary Hamil tonian,  it would certainly be premature  
to ask for such a scheme for the resolvent method of the Liouvillian. However,  it 
would certainly be interesting to have some simple test case studied using the concept 
of the Hilber t -Schmidt  space as a foundation, and to compare the results with those 
obtained from the conventional  p ropaga to r  schemes. Perhaps  it would not  be 
improper  to ask for such a test study in connect ion with the impor tan t  anniversary 
now celebrated by the prominent  leaders in this field, Linderberg and Ohrn.  

Dedication. This paper is dedicated to Professor Jan Linderberg, Aarhus University, Denmark, and to 
Professor Yngve Ohm, University of Florida, in connection with their 60th birthdays in 1994 in view of 
their important contributions to quantum chemistry and particularly to the propagator methods. Jan 
Linderberg was the first student, who got his PhD in the new field of "quantum chemistry" at Uppsala 
University, and - since this volume is specially dedicated to him - I would like to add that as a research 
leader I was particularly impressed by his independence and originality already as a student, and his 
ability to go to the literature to pick up new trends and to create new ideas of his own. This is how he 
and his collaborator found the propagator methods. Jan Linderberg and Yngve Ohrn are to be 
congratulated for their successful scientific carriers at the international level, and I wish them both many 
happy years to come. 
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